Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.185
Filtrar
1.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38557019

RESUMEN

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/toxicidad , Oro/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
2.
Chemosphere ; 355: 141836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561160

RESUMEN

The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.


Asunto(s)
Hypocreales , Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Proteoma , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/toxicidad , Antibacterianos/química , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
3.
Bull Environ Contam Toxicol ; 112(4): 52, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565801

RESUMEN

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.


Asunto(s)
Brassica , Nanopartículas del Metal , Nanopartículas , Cobre/toxicidad , Disponibilidad Biológica , Suelo , Óxidos , Clorofila , Ácido Pentético , Nanopartículas del Metal/toxicidad
4.
BMC Vet Res ; 20(1): 135, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570796

RESUMEN

AIMS: We investigated the effects of intraperitoneal injections of titanium dioxide nanoparticles (TiO2 NPs, 100 mg/kg) for 5 consecutive days on the developmental competence of murine oocytes. Furthermore, study the effects of TiO2 NPs on antioxidant and oxidative stress biomarkers, as well as their effects on expression of apoptotic and hypoxia inducing factor-1α (HIF1A) protein translation. Moreover, the possible ameliorating effects of intraperitoneal injections of fructose (2.75 mM/ml) was examined. MATERIALS AND METHODS: Thirty sexually mature (8-12 weeks old; ~ 25 g body weight) female mice were used for the current study. The female mice were assigned randomly to three treatment groups: Group1 (G1) mice were injected intraperitoneal (ip) with deionized water for 5 consecutive days; Group 2 (G2) mice were injected ip with TiO2 NPs (100 mg/kg BW) for 5 consecutive days; Group 3 (G3) mice were injected ip with TiO2 NPs (100 mg/kg BW + fructose (2.75 mM) for 5 consecutive days. RESULTS: Nano-titanium significantly decreased expression of GSH, GPx, and NO, expression of MDA and TAC increased. The rates of MI, MII, GVBD and degenerated oocytes were significantly less for nano-titanium treated mice, but the rate of activated oocytes was significantly greater than those in control oocytes. TiO2 NPs significantly increased expression of apoptotic genes (BAX, Caspase 3 and P53) and HIF1A. Intraperitoneal injection of fructose (2.75 mM/kg) significantly alleviated the detrimental effects of TiO2 NPs. Transmission electron microscopy indicated that fructose mitigated adverse effects of TiO2 NPs to alter the cell surface of murine oocytes. CONCLUSION: Results of this study suggest that the i/p infusion of fructose for consecutive 5 days enhances development of murine oocytes and decreases toxic effects of TiO2 NPs through positive effects on oxidative and antioxidant biomarkers in cumulus-oocyte complexes and effects to inhibit TiO2-induced increases in expression of apoptotic and hypoxia inducing factors.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Ratones , Femenino , Animales , Antioxidantes/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Titanio/toxicidad , Oocitos , Hipoxia/metabolismo , Hipoxia/veterinaria , Biomarcadores/metabolismo , Nanopartículas del Metal/toxicidad
5.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38557120

RESUMEN

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Asunto(s)
Cupriavidus , Nanopartículas del Metal , Cobre/metabolismo , Oro/toxicidad , Oro/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Cupriavidus/genética , Cupriavidus/metabolismo , Proteínas Bacterianas/metabolismo , Iones/metabolismo , Suelo , Glutatión/metabolismo , Oxidorreductasas/metabolismo
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646760

RESUMEN

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Asunto(s)
Clorofila , Cobre , Nanopartículas del Metal , Fotosíntesis , Complejo de Proteína del Fotosistema II , Plantones , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidad , Clorofila/metabolismo , Plantones/metabolismo , Plantones/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/efectos de los fármacos , Fluorescencia , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Cinética
7.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612865

RESUMEN

In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Industrias , Tecnología
8.
Microb Pathog ; 190: 106639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616002

RESUMEN

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Compuestos de Estaño , Difracción de Rayos X , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Bacterias/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
9.
Sci Rep ; 14(1): 5657, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454018

RESUMEN

Cerium oxide nanoparticles (CeO2 NPs, NM-212) are well-known for their catalytic properties and antioxidant potential, and have many applications in various industries, drug delivery, and cosmetic formulations. CeO2 NPs exhibit strong antimicrobial activity and can be used to efficiently remove pathogens from different environments. However, knowledge of the toxicological evaluation of CeO2 NPs is too limited to support their safe use. In this study, CeO2 NPs were orally administered to Sprague Dawley rats for 13 weeks at the doses of 0, 10, 100, and 1000 mg/kg bw/day, followed by a four week recovery period. The hematology values for the absolute and relative reticulocyte counts in male rats treated with 1000 mg/kg bw/day CeO2 NPs were lower than those in control rats. The clinical chemistry values for sodium and chloride in the treated male rat groups (100 and 1000 mg/kg/day) and total protein and calcium in the treated female rat groups (100 mg/kg/day) were higher than those in the control groups. However, these changes were not consistent in both sexes, and no abnormalities were found in the corresponding pathological findings. The results showed no adverse effects on any of the parameters assessed. CeO2 NPs accumulated in the jejunum, colon, and stomach wall of rats administered 1000 mg/kg CeO2 NPs for 90 days. However, these changes were not abnormal in the corresponding histopathological and immunohistochemical examinations. Therefore, 1000 mg/kg bw/day may be considered the "no observed adverse effect level" of CeO2 NPs (NM-212) in male and female SD rats under the present experimental conditions.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Nanopartículas/química , Cerio/toxicidad , Cerio/química , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
10.
An Acad Bras Cienc ; 96(1): e20230159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451624

RESUMEN

This study evaluated the median lethal concentration of silver nanoparticles and their effects in fish tambaqui Colossoma macropomum. Therefore, an acute toxicity assay was carried out in completely randomized design evaluating six different concentrations of silver nanoparticles on blood parameters of tambaqui. The silver nanoparticles were produced by chemical reduction with polyvinyl alcohol (AgNP-PVA). The lethal concentration 50% (LC50) was estimated using probit regression. The blood was collected, analyzed and the data were submitted to T-test (dying x surviving fish) and Tukey test (surviving fish). An increase in glucose, hematocrit, total plasma protein, hemoglobin, erythrocytes, leukocytes, monocytes, and neutrophils as well as reduced MCV (mean corpuscular volume) in dying fish compared to surviving fish were observed. Survived fish exposed to 187.5 µg/L showed an increase in hematocrit, MCV, and MCH and a reduction in erythrocytes, total numbers of leukocyte, thrombocyte, lymphocyte, and neutrophil. The fish exposed to concentrations below 125 µg/L, had returned the blood parameter to baselines compared to control. The estimated LC50 was 165.09 µg/L and was classified as highly toxic for the fish tambaqui. In higher concentrations, it causes an acute respiratory toxicity, but in concentrations below 125 µg/L, the fish can adapt to the stressing agent.


Asunto(s)
Characiformes , Nanopartículas del Metal , Animales , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Células Sanguíneas , Eritrocitos
11.
Environ Sci Pollut Res Int ; 31(18): 26997-27013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503953

RESUMEN

Ground-level ozone (O3) is the most phytotoxic secondary air pollutant in the atmosphere, severely affecting crop yields worldwide. The role of nanoparticles (NP) in the alleviation of ozone-induced yield losses in crops is not known. Therefore, in the present study, we investigated the effects of biogenicB-AgNPs on the mitigation of ozone-induced phytotoxicity in mung bean and compared its results with ethylenediurea (EDU) for the first time. Two mung bean cultivars (Vigna radiata L., Cv. SML-668 and PDM-139) were foliar sprayed with weekly applications of B-AgNPs (0 = control, 10 and 25 ppm) and EDU (0 = control, 200 and 300 ppm) until maturation phase. Morphological, physiological, enzymatic, and non-enzymatic antioxidant data were collected 30 and 60 days after germination (DAG). The mean O3 and AOT40 values (8 h day-1) during the cultivation period were approximately 52 ppb and 4.4 ppm.h, respectively. More biomass was accumulated at the vegetative phase due to the impact of B-AgNPs and EDU, and more photosynthates were transported to the reproductive phase, increasing yield. We observed that the 10 ppm B-AgNPs treatment had a more noticeable impact on yield parameters and lower Ag accumulation in seeds for both cultivars. Specifically, SML-668 cultivar treated with 10 ppm B-AgNPs (SN1) showed greater increases in seed weight plant-1 (124.97%), hundred seed weight (33.45%), and harvest index (37.53%) in comparison to control. Our findings suggest that B-AgNPs can enhance growth, biomass, yield, and seed quality, and can improve mung bean ozone tolerance. Therefore, B-AgNPs may be a promising protectant for mung bean.


Asunto(s)
Nanopartículas del Metal , Estrés Oxidativo , Ozono , Plata , Vigna , Vigna/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plata/toxicidad , Compuestos de Fenilurea/farmacología
12.
Plant Physiol Biochem ; 209: 108538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520964

RESUMEN

Silver nanoparticles (AgNPs) have gained significant attention in various fields due to their unique properties, but their release into the environment has raised concerns about their environmental and biological impacts. Silver nanoparticles can enter plants following their exposure to roots or via stomata following foliar exposure. Upon penetrating the plant cells, AgNPs interact with cellular components and alter physiological and biochemical processes. One of the key concerns associated with plant exposure to AgNPs is the potential of these materials to induce oxidative stress. Silver nanoparticles can also suppress plant growth and development by disrupting essential plant physiological processes, such as photosynthesis, nutrient uptake, water transport, and hormonal regulation. In crop plants, these disruptions may, in turn, affect the productivity and quality of the harvested components and therefore represent a potential threat to agricultural productivity and ecosystem stability. Understanding the phytotoxic effects of AgNPs is crucial for assessing their environmental implications and guiding the development of safe nanomaterials. By delving into the phytotoxic effects of AgNPs, this review contributes to the existing knowledge regarding their environmental risks and promotes the advancement of sustainable nanotechnological practices.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Ecosistema , Estrés Oxidativo , Plantas
13.
Aquat Toxicol ; 270: 106883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503038

RESUMEN

The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 µg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.


Asunto(s)
Bivalvos , Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Plata/análisis , Contaminantes Químicos del Agua/toxicidad , Bivalvos/metabolismo , Branquias
14.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458532

RESUMEN

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Asunto(s)
Nanopartículas del Metal , Enfermedades Mitocondriales , Humanos , Plata/toxicidad , Plata/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mitocondrias/metabolismo , Nanopartículas del Metal/toxicidad
15.
Food Chem Toxicol ; 186: 114581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460669

RESUMEN

To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Saccharomyces cerevisiae/genética , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Transporte Biológico
16.
Bull Exp Biol Med ; 176(4): 501-504, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491259

RESUMEN

High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929. The survival of L929 cells decreased linearly with increasing the concentration of Bi NP in a concentration range of 3-500 µg/ml; the LC50 value was 57 µg/ml. The unique combination of functional properties and moderate toxicity of the laser-synthesized Bi NP makes them a new promising platform for sensitization of multimodal cancer theranostics.


Asunto(s)
Nanopartículas del Metal , Animales , Ratones , Bismuto/toxicidad , Bismuto/química , Línea Celular Tumoral , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Nanopartículas/toxicidad , Nanopartículas/química , Nanoestructuras , Neoplasias/metabolismo , Fototerapia/métodos
17.
J Photochem Photobiol B ; 253: 112889, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492477

RESUMEN

One of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs. Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) methods were used to evaluate the structural properties of these particles. The release behavior of the prepared structures in acidic (pH 5.0) and neutral (pH 7.4) environments based on the ON/OFF approach was also examined. The biocompatibility properties of the particles were evaluated on mouse fibroblast (L929) and anticancer activities on neuroblastoma (SH-SY5Y) cells. The effects of prepared EPI-loaded particles and laser-controlled drug release on ROS production, genotoxicity, and apoptosis were also investigated in SH-SY5Y cells. With the calculated combination index (CI) value, it was shown that the activity of EPI-loaded AuNP@PDOP NPs increased synergistically with the ON/OFF-based approach. The developed combination approach is considered to be remarkable and promising for further evaluation before clinical use.


Asunto(s)
Indoles , Nanopartículas , Neuroblastoma , Polímeros , Animales , Humanos , Ratones , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Epirrubicina/farmacología , Oro/química , Nanopartículas del Metal/toxicidad , Nanopartículas/química
18.
Sci Total Environ ; 925: 171675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485022

RESUMEN

Globally rising antibiotic-resistant (AR) and multi-drug resistant (MDR) bacterial infections are of public health concern due to treatment failure with current antibiotics. Enterobacteria, particularly Escherichia coli, cause infections of surgical wound, bloodstream, and urinary tract, including pneumonia and sepsis. Herein, we tested in vitro antibacterial efficacy, mode of action (MoA), and safety of novel amino-functionalized silver nanoparticles (NH2-AgNP) against the AR bacteria. Two AR E. coli strains (i.e., ampicillin- and kanamycin-resistant E. coli), including a susceptible strain of E. coli DH5α, were tested for susceptibility to NH2-AgNP using Kirby-Bauer disk diffusion and standard growth assays. Dynamic light scattering (DLS) was used to determine cell debris and relative conductance was used as a measure of cell leakage, and results were confirmed with transmission electron microscopy (TEM). Multiple oxidative stress assays were used for in vitro safety evaluation of NH2-AgNP in human lung epithelial cells. Results showed that ampicillin and kanamycin did not inhibit growth in either AR bacterial strain with doses up to 160 µg/mL tested. NH2-AgNP exhibited broad-spectrum bactericidal activity, inhibiting the growth of all three bacterial strains at doses ≥1 µg/mL. DLS and TEM revealed cell debris formation and cell leakage upon NH2-AgNP treatment, suggesting two possible MoAs: electrostatic interactions followed by cell wall damage. Safety evaluation revealed NH2-AgNP as noncytotoxic and antioxidative to human lung epithelial cells. Taken together, these results suggest that NH2-AgNP may serve as an effective and safer bactericidal therapy against AR bacterial infections compared to common antibiotics.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Humanos , Antibacterianos/toxicidad , Escherichia coli , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Bacterias , Ampicilina/farmacología , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana
19.
Sci Total Environ ; 927: 171860, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518823

RESUMEN

Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.


Asunto(s)
Nanopartículas del Metal , Oligoquetos , Plata , Contaminantes del Suelo , Suelo , Plata/toxicidad , Animales , Contaminantes del Suelo/análisis , Oligoquetos/efectos de los fármacos , Suelo/química , Nanopartículas del Metal/toxicidad , Nanoestructuras/toxicidad , Invertebrados/efectos de los fármacos
20.
J Hazard Mater ; 470: 134128, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555673

RESUMEN

This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.


Asunto(s)
Farmacorresistencia Microbiana , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Farmacorresistencia Microbiana/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Transferencia de Gen Horizontal , Aguas del Alcantarillado/microbiología , Nitrógeno/química , Nitrógeno/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Anaerobiosis , Microbiota/efectos de los fármacos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...